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4 Place Jussieu, 75252 Paris, France
2 Physicochimie Curie (CNRS-UMR168), Institut Curie, Section de Recherche,
26 rue d’Ulm 75248, Paris Cedex 05, France

Received 12 July 2005, in final form 4 August 2005
Published 25 November 2005
Online at stacks.iop.org/JPhysCM/17/S4275

Abstract
It is often necessary, in scientific or everyday life problems, to find a randomly
hidden target. What is then the optimal strategy to reach it as rapidly as possible?
In this article, we develop a stochastic theory for intermittent search behaviours,
which are often observed: the searcher alternates phases of intensive search and
slow motion with fast displacements. The first results of this theory have already
been announced recently. Here we provide a detailed presentation of the theory,
as well as the full derivation of the results. Furthermore, we explicitly discuss
the minimization of the time needed to find the target.

1. Introduction

The search for specific targets plays an important role in many physical, chemical or biological
problems, as well as in social and economical sciences [1–3]. This is for instance the case
when reactants are diffusing in a solvent till they meet and are in condition to react [4], or when
a protein is searching for its specific target site on DNA [5, 6]. One can also mention predators
searching for prey [1–3], prospectors looking for minerals, or rescuers trying to locate victims,
for instance in avalanches. These various and complex situations can obviously be precisely
studied only by specific models. However, there are a few general features that are shared
by many search processes. In particular, when the targets are sparse and hidden, or difficult
to detect, the searcher should adopt a strategy which efficiently explores its environment.
Obviously, any rational search process should first identify the regions where the target presence
probability is the highest; however, this preliminary analysis is usually very uncertain. For
these reasons, the stochastic theory of search processes has become a field of growing interest
during the last few years [7–14].

In many examples, it can be observed that the searcher alternates phases of intensive search
and slow motion with phases of fast displacement non-receptive to the target. Recently, we
proposed [14] a one-dimensional description of such intermittent search strategies, especially
suitable to the case of foraging animals. This method was outlined in [14] and the first results
were presented without complete derivation. It was shown that the available experimental data
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support our main hypothesis: many animal species seem to adjust their intermittent behaviour
in order to minimize the search time.

Here, we extend this hypothesis to more general systems and present a detailed, new
derivation of the results. In particular, we provide a comprehensive analysis of the problem of
optimizing the search time for intermittent search processes. First, we define the model, and
briefly introduce the stochastic formalism involved. Then, we give a detailed treatment of the
specific, one-dimensional model, and we discuss the minimization of the mean search time
explicitly. The application to foraging animals is summarized in section 5, showing that our
results are validated by experimental data. The complete, somewhat lengthy, calculations are
given in the appendix.

2. Model

We present here an idealistic one-dimensional model, which can be justified in many cases as
a simple, approximate description for an intermittent search process.

Searcher

The searcher is a point particle moving on a circle of length L. Its position along the circle
is denoted by x , 0 � x � L (note that this geometry is equivalent to an infinite axis Ox with
period L). The searcher can adopt two different dynamical regimes, labelled by index i = 1
or 2.

• During regime 1, the searcher undergoes a simple diffusion process (or Brownian
motion) with diffusion coefficient D, modelling the phase of intensive search and slow
displacement. In this regime, the target is discovered at the first passage of the searcher
at its position. We call this phase ‘search’.

• During regime 2, the searcher undergoes a ballistic motion with constant velocity v. We
call this phase ‘move’.

The use of a Brownian motion to model the search phase is justified by the difficulty
of detecting a hidden target. Indeed in this case multiple passages at the same position are
required in order to scan the environment efficiently. The resulting wavering trajectory can
be modelled in a simplified way by a Brownian motion. If we assume that at each passage at
the target position the searcher has a finite probability to find it, the mathematical properties
of Brownian motion ensure that the time of discovery is equal to the first passage time at the
target.

Similarly, the ballistic motion is also used for the sake of simplicity to describe the rapid,
but not instantaneous displacement during the move regime. More sophisticated models of
fast displacement can be introduced, but they should not change significantly our qualitative
conclusions. Note that on the contrary permitting instantaneous displacements, which may
be justified in some cases, could drastically change our results; this point will be discussed in
further publications.

The successive durations of each regime i are assumed to be independent, exponential
stochastic variables Ti :

Prob(Ti > t) = exp(−λi t) = exp(−t/τi ). (1)

λi can be seen as a constant transition rate from regime i to regime i + 1 mod [2]. In particular,
τi = 1/λi is the average duration of regime i . Clearly, these laws are justified if the system has
no memory, and can be represented by a Markov process, which we will assume from now on.
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In the context of foraging animals, this assumption is valid for species with low memory skills,
for which the transition probabilities between search and move phases are constant in time.

Target

The target, assumed to be point-like, is located at x = 0 on the circle. This would correspond,
on an infinite line Ox , to an infinite number of regularly spaced targets at points x = kL, with
k integer. In many problems, an irregular or random array of targets would be more realistic,
but our model is valid as soon as the fluctuations of the inter-target distance are small compared
to L.

We then compute analytically the mean first passage time (MFPT) [15] at the target,
claiming that it is the most suitable variable to study quantitatively the efficiency of the search
process. Our goal is to find the optimal search strategy, from a kinetic point of view, by
determining the frequencies λi of each mode that minimize the MPFT.

3. Basic equations

First, it may be useful to recall the general equations satisfied by the MFPT. Let us consider
a general Markov process, and let p(r, i, t) be the probability density to find the system at
position r in state i at time t , and p(r, i, t|r0, i0, t0) the transition probability from (r0, i0) at
time t0 to (r, i) at time t . Both satisfy the forward Chapman–Kolmogorov equation [16], i.e.

∂

∂ t
p(r, i, t) = Li p(r, i, t) +

∑

j

(λi j p(r, j, t) − λ j i p(r, i, t)) (2)

where Li is the stochastic evolution operator in regime i , and λ j i is the transition rate from
regime i to regime j .

We now assume that a region A (the target) is absorbing in regime α: as soon as the system
reaches A in regime α, it is trapped. Let 〈T |r0, i0〉 be the mean first arrival time in (A, α),
starting from (r0, i0) at time zero. It satisfies the backward (adjoint) equation

−1 = L+
i0
〈T |r0, i0〉 +

∑

i

λii0(〈T |r0, i0〉 − 〈T |r0, i〉) (3)

where L+
i is the adjoint evolution operator in regime i , with the boundary conditions

〈T |r0, i0〉 = 0 if r0 ∈ A and i0 = α. (4)

We now rewrite the equations of the previous paragraph in the case of the one-dimensional
model described in section 2, where the target A is point-like. Note that here α = 1. We call
t (x, i) the mean first passage time at the target starting from (x, i).

The backward Chapman–Kolmogorov differential equation (3) reads in this case

D
∂2t (x, 1)

∂x2
+ λ1[t (x, 2) − t (x, 1)] = −1

v
∂ t (x, 2)

∂x
+ λ2[t (x, 1) − t (x, 2)] = −1.

(5)

The boundary conditions, expressing space periodicity t (x + L, i) = t (x, i), and absorption
for x = 0 and i = 1 are as follows:

t (0, 1) = t (L, 1) = 0

t (0, 2) = t (L, 2).
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After some computations (see appendix A), we obtain

t (x, 1) = λ1 + λ2

λ1λ2

L

β − α

[
β2 1 − eαx

1 − eαL
− α2 1 − eβx

1 − eβL

]
− λ1 + λ2

λ1

x

v
(6)

t (x, 2) = λ1 + λ2

λ1λ2

L

β − α

[
β2

1 − λ2
v

1
β

eαx

1 − eαL
− α2 1 − λ2

v
1
α

eβx

1 − eβL

]
− λ1 + λ2

λ1

x

v
− 1

λ1
(7)

with

α = 1

2



λ2

v
+

√
λ2

2

v2
+ 4

λ1

D



 and β = 1

2



λ2

v
−

√
λ2

2

v2
+ 4

λ1

D



 .

Let 〈t〉 be the MFPT averaged over the initial position x of the searcher, assumed to be
uniformly distributed over the ‘circle’ [0, L]. This quantity defines what we call the search
time.

〈t〉 = 〈t (x, 1)〉 = 1

L

∫ L

0
t (x, 1) dx = λ1 + λ2

λ1λ2

L

β − α

[
β2 1 − eαL−1

αL

1 − eαL

− α2
1 − eβL −1

βL

1 − eβL

]
− λ1 + λ2

λ1

L

2v
. (8)

In the low density limit defined by L � v
λ2

,
√

D
λ1

, λ2 D
λ1v

, we obtain

〈t〉 = L

2v

(
1

λ1τ
+

1

λ2τ

)
τ 2λ2

2 + 2λ1τ√
τ 2λ2

2 + 4τλ1

(9)

where τ = D
v2 and 1

L is the target density. One can notice that the linear dependence in L (the
typical inter-target distance) ensures that this intermittent strategy is much more efficient than
a pure diffusive strategy which would scale like L2.

4. Minimization of the search time

We now study the minimization of 〈t〉. It can be shown (see appendix B) that 〈t〉 has no global
minimum for finite values of λ1 and λ2. However, it is reasonable to assume that λ1 has an
upper bound λ1max. Indeed, it is clear that the predator cannot gather its sensorial abilities
and its attention instantaneously: thus, we assume that the average duration τ1 of the search
phase has a minimum value τ1min or equivalently that λ1 has a maximum value λ1max. This
assumption is discussed further on in appendix B. After some computations, it is shown that
in this case there is a single minimum when λ1 and λ2 are such that

λ1 = λ1max (10)

λ5
2λ1 +

6

τ
λ3

2λ1 − 8

τ 2
λ3

1 = 0. (11)

Writing (λ2τ ) ≈ C(λ1τ )ν , a simple scaling analysis shows that equation (11) yields two
different regimes.

• If λ1τ � 1 (regime S), one finds

λ1 = λ1max (12)

λ2 ≈
(

4

3τ

) 1
3

λ
2
3
1 (13)

and the predator spends more time searching than moving.
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• If λ1τ � 1 (regime M), one has

λ1 = λ1max (14)

λ2 ≈
(

8

τ 2

) 1
5

λ
3
5
1 (15)

and quite surprisingly the searcher spends more time moving than searching.

We finally end up with two scaling relations involving λ1 and λ2 with very close exponents 2
3

and 3
5 . The threshold value 1

τ
has the meaning of an overlap limit: τ is the duration for which

the typical distance covered is the same for both states 1 and 2. The non-overlap condition is
determined by forming the ratio ρ of the length scanned in phase 1 over the distance covered

in a phase 2 move ρ = λ2
v

√
D
λ1

. In the regime S, ρ ≈ (λ1τ )
1
6 < 1 and there is no overlap.

It is noteworthy that in this regime ρ can be small, which means that the overall scanned
space is not connex but displays holes of unvisited space. Conversely, in regime M, one
has ρ ≈ (λ1τ )

1
10 > 1 and overlap may occur, which seems counterintuitive for an optimal

exploration. Nevertheless the power 1
10 ensures that ρ is never much larger than unity and the

optimal trajectory always explores unscanned space of significant size.

5. Application to foraging animals

Numerous studies of foraging behaviour of a broad range of animal species show that
intermittent behaviours, such as the one sketched by our model, are commonly observed
and that the durations of search and displacement phases vary widely [1–3]. In this section
we compare our model with experimental data extracted from O’Brien et al [2] and Kramer
et al [3]. These studies provide the average duration (and therefore its inverse, the rate) of
search and motion phases for 18 different species including planktivorous fish [17], ground
foraging birds [18, 19] and lizards [20], which perform an intermittent search behaviour. The
corresponding rates λ1 range from 0.1 to 100 Hz, with no systematic correlation with the
animal size. Note that the prefactor involving τ in equation (12) and (14) is a priori species
dependent. Nevertheless, we will show that this characteristic time roughly assumes only two
values.

The value of τ for each species can be obtained from equation (11), and leads to the
distribution of log(τ ) given in figure 1. This distribution is quite unexpectedly bimodal.
Moreover, it appears that the first peak (around t = 0.1 s) corresponds to foragers in the
regime S and that the second one (around t = 25 s) corresponds to foragers in regime M. Thus
the characteristic time τ defined in our model proves to be a tool characterizing distinctly two
subclasses of foragers: a set of animals in the regime S, and a set in the regime M. The small
amplitude of the fluctuations of τ within each set allows us to perform a comparative analysis
of these data within each set.

Figure 2 gives the log–log plots of the λ1 and λ2 data of sets S and M. Both sets are strongly
correlated (with a coefficient r > 0.9), as shown by the linear regressions. Moreover, their
slopes are in agreement with our theoretical prediction, namely 3/5 for M (experimental slope
0.7±0.1) and 2/3 for S (experimental slope 0.6±0.1). Note that the theoretical values of these
slopes are very close, and we do not expect to distinguish them experimentally due to the error
bars of experimental data. However, this agreement suggests that many species minimize their
search time for prey according to the intermittent strategy described by our model, and puts
forward the idea that the kinetics of the trajectories is a prevailing factor which is optimized
by natural selection.
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Figure 1. Log (τ ) distribution for intermittent search behaviours. The first peak (around t = 0.1 s)
corresponds to foragers in the regime S , the second one (around t = 25 s) corresponds to foragers
in the regime M.
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Figure 2. Log–log plot of experimental data [2, 3] of intermittent search behaviours, and their
linear regression.

(This figure is in colour only in the electronic version)

6. General analysis of the minimum search time

Section 4 describes the case of a minimum value τ1m of the search regime. It is realistic to
consider that the move regime could also have a minimum duration τ2m , corresponding for
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instance to an acceleration phase. The analysis of the minimum of the MFPT is in this case
different and is explicitly performed in appendix B. It can be summarized as follows:

• in regime M, the limitation on τ2 does not modify the scaling laws (14)

λ2τ ∼ (λ1τ )3/5, with λ1τ � λ2τ � 1 (16)

• in contrast, in regime S, the scaling laws (12) only apply if τ2m is much smaller than τ1m ;
then

λ2τ ∼ (λ1τ )2/3, with λ1τ � λ2τ � 1 (17)

• if τ2m is smaller than but of the same order as τ1m , the minimum search time is obtained
for τ1 = τ1m and τ2 = τ2m .

The fact that the scaling laws agree with experimental observations in the case of foraging
animals supports the hypothesis that for these animals τ2m is indeed much smaller than τ1m .

7. Conclusion

In summary, the model discussed in this paper raised the question of determining the fastest
strategy for finding a hidden target. In the general framework of intermittent search strategies,
we put forward scaling laws which have been validated by comparison with observations in the
case of foraging animals, despite the huge simplifications we adopted to describe the complex,
actual situation. This indicates that the hypothesis should be at least partially valid, and that
the kinetics of the trajectories is a prevailing factor which is optimized by natural selection.

Within a broader scope, similar hypotheses should be applicable to many problems
in science and technology. Obviously, it would be necessary to generalize the model by
considering more sophisticated motions for each regime, for instance, abnormal diffusion
during the search regime, or Levy flights for the move regime. Furthermore, non-exponential
lifetimes, corresponding to non-Markovian processes, would be realistic in many cases. On the
other hand, using a one-dimensional model can be coarsely justified for certain predator–prey
systems, but it is clearly necessary to address the problem in n-dimensional spaces, although
it can be very difficult to obtain an analytical result and exact asymptotics. The study of such
generalizations is in progress.

Appendix A. Calculation of the search time

One can use a matrix formulation of the differential system:

d

dx




t (x, 1)

t (x, 2)

t ′(x, 1)



 =



0 0 1

− λ2
v

λ2
v

0
λ1
D − λ1

D 0








t (x, 1)

t (x, 2)

t ′(x, 1)



 +




0

− 1
v

− 1
v



 (A.1)

which is easily solved and gives

t (x, 1) = C1eαx + C2eβx + C3 +
λ1 + λ2

λ1v

(
λ2 D

λ1v
− x

)
+

1

λ1

t (x, 2) = λ2

βv
C1eαx +

λ2

αv
C2eβx + C3 +

λ1 + λ2

λ1v

(
λ2 D

λ1v
− x

)

t ′(x, 1) = αC1eαx + βC2eβx − λ1 + λ2

λ1v

(A.2)
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with

α = 1

2



λ2

v
+

√
λ2

2

v2
+ 4

λ1

D



 and β = 1

2



λ2

v
−

√
λ2

2

v2
+ 4

λ1

D



 .

Using the periodic boundary condition, this yields

C1 =
(

1

λ1
+

1

λ2

)
L

β2

α − β

1

1 − eαL

C2 =
(

1

λ1
+

1

λ2

)
L

α2

α − β

1

1 − eβL

C3 = −(C1 + C2) −
(

1

λ1
+

1

λ2

)
D

λ2
1

λ2

v2
− 1

λ1
.

(A.3)

Eventually one can write the final solution,

t (x, 1) = λ1 + λ2

λ1λ2

L

β − α

[
β2 1 − eαx

1 − eαL
− α2 1 − eβx

1 − eβL

]
− λ1 + λ2

λ1

x

v
(A.4)

t (x, 2) = λ1 + λ2

λ1λ2

L

β − α

[
β2

1 − λ2
v

1
β

eαx

1 − eαL
− α2 1 − λ2

v
1
α

eβx

1 − eβL

]
− λ1 + λ2

λ1

x

v
− 1

λ1
. (A.5)

Appendix B. Optimization of the search time

Search time

The search time 〈t〉 given by (9) can be written with adimensional variables as

〈t〉
τ

= L

2vτ

X + Y

Y

X + 2Y 2

√
X2 + 4XY

≡ L

2vτ
C (B.1)

with

X = 1

λ1τ
= τ1

τ
and Y = 1

λ2τ
= τ2

τ
(B.2)

τi being the average duration of phase i (i = 1, 2). Introducing the new variable u = X/Y ,
we have

(1 + u)
u + 2Y√
u2 + 4uY

= C � 1 (B.3)

which allows expression of Y and X as functions of u and C

Y = u

2

√
θ2 − 1

[
θ +

√
θ2 − 1

]
and X = uY = u2

2

√
θ2 − 1

[
θ +

√
θ2 − 1

]

(B.4)

with

θ = C

1 + u
∈ [1, C]. (B.5)
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Figure B.1. Contourlines of the average search time. Plain line: C = 3. Dashed line C = 2.5.

Contourlines (curves of equal C)

It is now easy to obtain the contourlines of the average search time in the plane (X, Y )

corresponding to a given value of C: X and Y are given by (B.4) and (B.5) as a function
of the parameter u, with u ∈ [0, C − 1]. When u → 0, X and Y tend to 0 and X/Y → 0: the
curve is tangent to axis (Ox). When u → C − 1, X and Y tend to 0 and X/Y → C − 1.

It is seen that for a given value of u, X and Y increase with C and the range [0, C − 1]
of possible values of u also increases with C , so that the contourline 	C corresponding to the
value C is contained in the interior of any 	C′ with C ′ > C (see figure B.1).

Maximum values of X and Y

It is clear that for a given value of C , X and Y have maximum values Xm and Ym respectively.
From (B.4), (B.5), we find that

dY

du
= 1

2C
θ

[
θ +

√
θ2 − 1

] [
θ3 − C

θ
√

θ2 − 1
+ θ − C

]

dX

du
= 1

2C
θ

[
θ +

√
θ2 − 1

] [
θ3 + Cθ2 − 2C

θ
√

θ2 − 1
+ θ − C

]
.

(B.6)

From these expressions, it is easily shown that dX/du and dY/du respectively vanish for
u = u1 and u = u2, respectively, u1 and u2 being uniquely determined values of [0, C − 1],
corresponding to the maxima of X and Y .
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Curves of maximum X

If dX/du = 0, we see from (B.6) that

C = θ2(θ +
√

θ2 − 1)

2 − θ(θ − √
θ2 − 1)

and u = C

θ
− 1 = 2(θ2 − 1)

2 − θ(θ − √
θ2 − 1)

. (B.7)

Inserting the expression of u into (B.4), we obtain the equation for the curve of maximum X ,
parametrized with θ ∈ [1,∞]:

Y = (θ2 − 1)3/2 θ +
√

θ2 − 1

2 − θ(θ − √
θ2 − 1)

, X = 2(θ2 − 1)5/2 θ +
√

θ2 − 1

[2 − θ(θ − √
θ2 − 1)]2

.

(B.8)

It is seen that if θ → 1, which corresponds to u → 0, or X � Y , then

Y ∼
(

X

2

)3/5

(B.9)

whereas if θ → ∞, then u → ∞, X � Y and

Y ∼ (
3
4

)1/3
X2/3. (B.10)

Thus, we recover the scaling laws given in (14) and (12), but a discussion is necessary.

Optimal search time with minimum τ1

We have shown that the smallest value of the average search time is L(2vτ)−1, obtained when
C = 1, corresponding to X = Y = 0, or τ1 = τ2 = 0: this is clearly not a realistic condition,
since, practically, the researcher cannot perform infinitely fast oscillations between phases 1
and 2! In fact, it is reasonable to assume that, as noticed in section 6, the researcher needs a
minimum time τ1m , so that the average duration of phase 1, τ1, should be at least τ1m . Then,
the smallest accessible value of C corresponds to a contourline 	C for which the maximum
value of X is Xm = τ1m/τ . Thus, we obtain the optimal condition given previously:

X = Xm, Y ∼ C Xα (B.11)

C and α being given by (B.9) or (B.10), which agree with experimental data for a broad class
of predators searching for a prey.

However, it may be remarked that phase 2, corresponding to a ballistic, fast motion, should
also have a minimum duration τ2m , necessary for the researcher to obtain the best physical
performances.

Optimal search time with minimum τ2

To discuss this new situation, we need to consider curves of maximum Y .
If dY/du = 0, we see from (B.6) that

C = θ2(θ +
√

θ2 − 1)

1 + θ
√

θ2 − 1
and u = θ2 − 1

1 + θ
√

θ2 − 1
. (B.12)

By (B.4) and (B.12), we get the equations for the curve of maximum Y :

Y = 1

2
(θ2 − 1)3/2 θ +

√
θ2 − 1

1 + θ
√

θ2 − 1
and X = 1

2
(θ2 − 1)5/2 θ +

√
θ2 − 1

[1 + θ
√

θ2 − 1]2
(B.13)

from which it is seen that if θ → 1, then u → 0, X � Y and

Y ∼ 2−2/5 X3/5 (B.14)
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and if θ → ∞, then u → 1, and

Y ∼ X. (B.15)

If we want to optimize the search time with the condition that Y � Ym ≡ τ2m/τ (and no
condition on X), we have to choose C in such a way that the maximum value of Y on the
corresponding contourline is just τ2m/τ , and we obtain the limiting scaling laws (B.14), (B.15),
with Y = Ym.

Optimal search time: general case

In fact, it seems reasonable to optimize the search time with both conditions

X � τ1m

τ
, Y � τ2m

τ
. (B.16)

Then, we have to consider several situations, depending on the respective values of τ1m and
τ2m . Obviously, it is very difficult to know these values precisely for animals, but it should be
possible if the pursuer is a man-built device. Nevertheless, we can remark that the minimum
time τ1m required for the search phase—which needs to process the information contained in
the weak or intricate signals provided by receptors of the searcher—should presumably be
larger than the minimum time τ2m in the move phase. Thus, we will suppose that

τ1m � τ2m . (B.17)

Then, the minimum value of C corresponds to a contourline	C which is tangent to the boundary
of the permitted region (X � τ1m/τ, Y � τ2m/τ ) or which passes by point (Xm, Ym). But
the contact point cannot be a point of maximum Y , given by (B.13), because for these points,
u = X/Y is always smaller than one, by (B.12).

Finally, if the contact point of 	c with the line X = τ1m/τ corresponds to u = u1 �
τ1m/τ2m , then the optimal value of the search time occurs for X = Xm = τ1m/τ, Y = Ym =
τ2m/τ : the pursuer should switch from one phase to the other one as frequently as possible.
From (B.7), this situation occurs when parameter θ satisfies the inequality

2(θ2 − 1)

2 − θ(θ − √
θ2 − 1)

� τ1m

τ2m
= Xm

Ym
≡ um. (B.18)

Using (B.3) and (B.5), inequality (B.15) can be written

4Y 2
m(1 + um) − 2Ymum(1 + 2um) − u3

m � 0. (B.19)

Thus, in the region (A) of the positive quarter of plane (Xm, Ym) where (B.19) holds, the
minimal value of the average search time is obtained for X = Xm and Y = Ym, and no scaling
law should be available (at least, due to the optimization of search time, since other justification
of scaling laws cannot be discarded). On the contrary, in the complementary region (B) of the
positive quarter of the plane, the minimal average search time is obtained for X = Xm and Y
scaling according to (B.9) and (B.10), depending on whether Y � X or Y � X . It should be
noticed that the curve 	 separating regions (A) and (B) satisfies the equations

Y = u

4(1 + u)

[
1 + 2u +

√
1 + 8u(1 + u)

]
, u = X/Y (B.20)

so that, when u → 0, X and Y → 0, with Y ∼ ( 1+
√

2
2 X)1/2, and when u → ∞, X and

Y → ∞, with Y ∼ ( X
2 )1/2. When u = 1, X = Y = 1

8 [3 +
√

17] ≈ 0.89.
Region (B), where the scaling laws hold, lies below 	. If the heuristic but reasonable

condition (B.14) Ym � Xm is satisfied, all points (Xm, Ym) are in (B) for Xm � 0.89 and
the scaling law (B.9) holds. On the other hand, for Xm � 0.89, the scaling law (B.10) is
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only justified if (Xm, Ym) lies in region (B), i.e. if, for Xm � 1, Ym � (Xm/2)1/2, which is
considerably stronger than (B.14).

Clearly, one should not expect actual search processes to be in exact agreement with the
numerical values given above, but this discussion can shed a new light on many intermittent
processes.
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